
JOURNAL OF COMPUTATIONAL PHYSICS 90, 161-175 (1990)

Threshold Accepting: A General Purpose Optimization
Algorithm Appearing Superior to Simulated Annealing

GUNTER DUECK AND TOBIAS SCHEUER

IBM Scient$c Center,
Heidelberg, Wesr German)

Received March 24, 1989; revised September 19. 1989

A new general purpose algorithm for the solution of combinatorial optimization problems
is presented. The new threshold accepting method is even simpler structured than the well-
known simulated annealing approach. The power of the new algorithm is demonstrated by
computational results concerning the traveling salesman problem and the problem of the
construction of error-correcting codes. Moreover, deterministic (!) versions of the new
heuristic turn out to perform nearly equally well, consuming only a fraction of the computing
time of the stochastic versions. As an example, the deterministic threshold accepting method
yields very-near-to-optimum tours for the famous 442-cities traveling salesman problem of
Grotschel within 1 to 2s of CPU time. c 1990 Academic Press, Inc.

Simulated annealing (SA) is a stochastic optimization algorithm, which borrows
deep ideas from statistical physics. It was invented in a pioneering paper by
Kirkpatrick, Gelatt, and Vecchi [l] who applied it to VLSI layout and graph
partitioning. Since then it has become a popular general purpose tool for a wide
class of combinatorial optimization problems. In these problems one wants to find
among many configurations the one which minimizes a certain “quality function.”
To accomplish this task Kirkpatrick et al. introduced the concept of “annealing”
and combined it with the well-known Monte-Carlo algorithm by Metropolis et al.
[2], which originally was used to numerically perform averages over large systems
from statistical mechanics. The idea of SA runs as follows. First we choose an initial
configuration. Then each step of the SA algorithm consists of a slight change of the
old conliguration into a new one. The “qualities” of the two configurations are
compared. If the new configuration is better than it serves as the “old” configura-
tion for the next step. If it is worse then it is accepted only with a certain probabil-
ity as the current configuration for the next step. This probability depends on a
time-dependent parameter called temperature and on the decrease in quality. The
probability that a worse configuration is accepted is slowly lowered during the
running time.

We make these explanations more precise:
161

0021-99911’90 $3.00
Copyright :p 1990 by Academic Press, Inc.

All rights of reproduction in any form reserved

162 DUECKAND SCHEUER

SA ALGORITHM FOR MAXIMIZATION.

choose an initial configuration
choose an initial temperature T > 0
Opt: choose a new configuration which is a stochastic small

perturbation of the old configuration
compute AE := quality(new configuration)-quality(old conliguration)
IF AE>O

THEN old configuration := new configuration
ELSE with probability exp(6E/T)

old configuration := new conliguration
IF a long time no increase in quality or too many iterations

THEN lower temperature T
IF some time no change in quality anymore

THEN stop
GOT0 Opt

Note that if the temperature is high, very often worse configurations are accepted.
It is a kind of art to choose a successful annealing schedule, that is, a rule for
lowering the temperature in the algorithm. In most applications the success of the
algorithm is very sensitive against the choice of’the annealing schedule.

We briefly explain the parameters above within the framework of the traveling
salesman problem (TSP). Here, the task is to find a minimum length tour through
a given number of “cities.” As an initial configuration, one chooses a random tour
through all of the cities. A new configuration is obtained by small changes in the
tour. The quality of a tour is given by its length.

The method called threshold accepting (TA) which we want to study here, is
formally very similar to SA.

TA ALCXIRITHM FOR MAXIMIZATION.

choose an initial configuration
choose an initial THRESHOLD T> 0
Opt: choose a new configuration which is a stochastic small

perturbation of the old configuration
compute AE := quality(new configuration)-quality(old configuration)
IF AE> -T

THEN old configuration := new configuration
IF a long time no increase in quality or too many iterations

THEN lower THRESHOLD T
IF some time no change in quality anymore

THEN stop
GOT0 Opt

THRESHOLD ACCEPTING 163

The essential difference between SA and TA consists of the different acceptance
rules. TA accepts every new configuration which is not much worse than the old one
(SA accepts worse solutions only with rather small probabilities).

An apparent advantage of TA is its greater simplicity. It is not necessary to
compute probabilities or to make random decisions. Moreover we claim:

TA J’ields better results than SA (even in a considerable smaller amount
of time respectively in a smaller amount of “new configuration choice
steps.“)

Until now we have studied TA for the TSP, for finding good error-correcting
codes, and for the minimization of spin-glass Hamiltonians. Originally, we were
working with Andreas Dress on spin-glass Hamiltonians during his stay in the IBM
Scientific Center, Heidelberg. During this research, we found the new heuristic TA
and observed its superiority to SA.

For a fair comparison of these methods, however, we looked for very elaborated
results found by SA. A very challenging large problem is the 442-cities problem of
Grotschel [3]. He found a good solution of tour length 51.45. In [4], Rossier et al.
found a new record-breaking solution by a sophisticated SA algorithm with tour
length 51.42. Miihlenbein et al. [S] used a 24-processor parallel computer to obtain
in many hours of CPU time a solution with length 51.21. Independently, the
problem was solved by Holland [6] in his dissertation using the methods of
Padberg and Rinaldi [7]. The optimum tour length for the Griitschel problem is
therefore known to be 50.80 (in real *8, 50.69 in integer distances).

Rossier’s et al. paper does not only contain the results of their computations, but
also the number of steps used in the SA approach. Thus, is was possible for us to
compare SA and TA under really equal conditions. We used TA with the same
number of steps as with SA in [4], and we can see the differences in the quality of
the results. It turns out, that TA is overwhelmingly superior to SA. With the same
number of steps we found that the TA solutions are in the average much better than
the best SA solutions ever obtained. Especially, we found within 50 trials of our TA
algorithm two tours below 51.00, namely 50.97 and 50.95, which are displayed
below. We are disappointed that usually in the literature the authors publish only
their best value obtained by an algorithm. This makes it nearly impossible to com-
pare methods. However, for TA, the difference is so large, that we can demonstrate
the superiority of TA in any case.

We report in the next section our results for different sizes of the TA method in
detail (tour length of every run, mean, and variance).

A problem that is much harder than the TSP problem is that of finding good
error-correcting codes. In [S] El Gamal et al. found excellent codes using the SA
methods. They also give rough data concerning the running times of their algo-
rithms. We wrote a quick application also of TA in this field and report our results
here. We have enough results to demonstrate again the superiority of TA. We did
not try to tune our algorithms in the best possible fashion here and we used only

164 DUECK ANDSCHEUER

trivial lowering threshold schemes. Since in the case of finding codes the quality
function has a very noncontinuous behavior (in contrast to the TSP), finding good
codes needs more tedious work on the algorithm and, very probably, much more
computational effort.

Originally, we gained our first experience with TA applied to the minimization of
spin-glass Hamiltonians. In this case we also compared SA and TA and recognized
the superiority of TA. However, we have no really fair comparable results obtained
by SA. Hence, we report only our results on the TSP and for the construction of
codes.

We turn now to another phenomenon which occurred during our experiments
with Grotschel’s TSP problem. We used TA with LIN-ZOPT configuration
changes (definition below). For LIN-2-OPT one usually selects two cities at
random and forms a new LIN-2-OPT configuration based on these two cities. After
having written up our results on TA, we designed a deterministic version of TA. We
did not select two cities at random, but we made a LIN-ZOPT exchange of pairs
of cities in a prescribed order. The resulting TA method is completely deterministic.
Originally we had no hope of obtaining good results because we shared the
common opinion that deterministic algorithms do not behave well in comparison
with stochastic methods.

Surprisingly, we found that the deterministic version yields equally good results,
needs fewer steps, and is faster because there is no need to generate random
numbers. We tried this algorithm for numerous ‘random initial tours and obtained
excellent results. As one could expect, the variance of the solutions is higher than
in the stochastic case, but still it is not too large. We give the results in the next
section. All programs with which we experimented consist of less than 150 lines of
FORTRAN code. The running times were about 3 min for 4,OOO,OOO steps in the
stochastic TA down to about 4s for a 442,000 step deterministic run. Here, all
computation times have been measured on an IBM 3090 Mod 200 VF.

GR~TSCHEL'S &%~ROBLEM: TA ALGORITHMS

Grotschel’s 442-cities problem is a Euclidean TSP. The coordinates of 442 cities
are given in the Euclidean plane. A closed polygonal tour of minimum length
joining all given points (cities) is asked for. If C is the set of cities, a tour can be
regarded as a permutation rr : C + C. Given a permutation II, the corresponding
tour starts in n(l), goes to n(2), goes to n(N), and ends in 7c(1), where N is the
number of cities (here N = 442).

TA starts with a random permutation on C as an initial tour. As in [4], we
choose the LIN-2-OPT exchange as a procedure to construct a new perturbation
tour from an old one. This rule has been applied successfully to Euclidean TSPs
(cf. L-91).

THRESHOLD ACCEPTlNG 165

LIN-2-OPT.

choose i, j E C, i <j
cut in the tour the connections between the cities

rc(i)and n(i+ 1) (n(N+ 1) := n(l))
and n(j)andz(j+l) (rc(N+l):= z(1))

insert connections between
rc(i) and n(j)

and z(i+ l)andn(j+ 1) (rc(N+ 1) := n(l))

Formally, the new permutation is given by

f(k) = n(k) for k<i or k>j
n(i+j+ 1 -k) for i<k<j.

Rossier et al. [4] used SA with this rule for the choice of the new configurations.
The standard SA approach with the best annealing schedule is named A2Nl in [4].
In another series of experiments, Rossier er al. tried LIN-ZOPT exchanges only for
those cities n(i), r(j) whose distance in the plane is rather small. This is a
reasonable heuristic rule, because in the LIN-2-OPT the connection between n(i)
and n(j) is inserted, and there is a poor chance of having a good step if this
connection is of great length (this “distance” approach is called A2N4 in [4]).
We designed TA algorithms for these two cases. Also we did not try to design TA
algorithms for the other “neighbourhood relations,” because we suspect that they
are only good heuristics for this specific 442-problem. In [4], the best result is 51.42
with the so-called A2N3 method. However, our A2N4 analogue algorithm for TA
already performs much better.

In [4], the reported results have been obtained by 2,000,OOO LIN-ZOPT trials.
We designed completely analogous TA algorithms for the pure approach (randomly
select two cities and try LIN-2-OPT) and for the A2N4 approach (randomly select
two neighboring cities and try LIN-2-OPT).

TA STANDARD ALGORITHM.

choose initial random tour
thresholds:

0.13, 0.12, 0.11, 0.10, 0.095, 0.09, 0.085, 0.08, 0.075, 0.075, 0.075, 0.07, 0.07, 0.07,
0.065,

0.065, 0.065, 0.065, 0.06, 0.06, 0.055, 0.055, 0.05, 0.05, 0.05, 0.04, 0.04, 0.03,
0.02, 0

FOR every threshold T= 0.13, 0
DO n times

choose i, j at random
perform LIN-2-OPT
IF length(new tour) < length(old tour) + T

THEN old tour := new tour

166 DUECKANDSCHEUER

In the next algorithm we consider only such pairs of cities with distance less than
0.45.

TA DISTANCE ALGORITHM.

choose initial random tour
thresholds:

0.13, 0.12, 0.11, 0.10, 0.095, 0.09, 0.085, 0.08, 0.075, 0.075, 0.075, 0.07, 0.07, 0.07,
0.065,

0.065, 0.065, 0.065, 0.06, 0.06, 0.055, 0.055, 0.05, 0.05, 0.05, 0.04, 0.04, 0.03,
0.02, 0

FOR every threshold T= 0.13, 0
DO n times

choose i, j at random such that
distance(n(i), n(j))<0.45

perform LIN-ZOPT
IF length(new tour) < length(old tour) + T

THEN old tour := new tour

In the SA algorithm it is very important to provide a good and carefully chosen
annealing schedule. Therefore, it is obviously of interest to analyze the sensitivity of
the TA algorithm against the choice of the threshold sequence. In the very first
versions, we operated with the trivial sequence .15 .14.. . .Ol 0. We have the feeling
(really only the feeling, not, for instance, the impression) that the threshold
sequence above is somewhat better. We made some experiments to find better
threshold sequences; however, the trivial sequence is essentially best.

All these experiments give the hint that TA is rather insensitive in the threshold
sequence.

DETERMINISTIC TA ALGORITHMS FOR THE TSP

For the 442-problem we designed a deterministic algorithm as follows. In a
preprocessing run we compute for each city the next nb (we used nb = 10)
neighbours (the nb cities with the least distance). Then the deterministic algorithm
performs a LIN-ZOPT trial for each threshold, each city, and each of the nearest
neighbours of that city in a prescribed order. More precisely, we perform

DETERMINISTIC TA ALGORITHM.

fix a positive integer nb
compute for every city the nearest nb neighbour cities
choose initial random tour
thresholds:

0.099, 0.098, 0.097,..., 0.003, 0.002, 0.001, 0

THRESHOLD ACCEPTING 167

FOR every threshold T= 0.099, 0
FOR every city i= 1, 442
FOR every city being one of the nb nearest neighbours of

city i
DO perform LIN-ZOPT

IF length(new tour) < length(old tour) + T
THEN old tour := new tour

We point out that we use a different threshold sequence for the deterministic
version. The reason is that in this version there is some danger for the algorithm
to circulate without any improvement if the algorithm is run a long time with the
same threshold. Thus, we preferred to run the algorithm with a larger number of
thresholds and with a smaller number of steps with the same threshold. Again, our
experiments showed that TA is insensitive against the threshold sequence. Hence,
we kept the trivial choice of the sequence in our program.

A complete run of this algorithm performs 442 times nb times 100 LIN-2-OPT
trials. The running time depends essentially on the parameter nb.

In the preceding section we made a random choice of two cities, which we
examined eventually, if the distance between the two cities is small enough, trying
a LIN-2-OPT exchange. This procedure is very CPU time consuming, and we
organized the algorithm only in this way, because we really wanted to have the
same setup as was used in [4]. In general, the “nearest neighbour approach” seems
more appropriate to us.

The computational results of the deterministic version are given below.

GR~TSCHEL'S 442 PROBLEM: COMPUTATIONAL RESULTS

We start with the computational results on Grgtschel’s TSP on 442 cities which
were obtained by Rossier et al. [4] using the SA approach. In the first row, the best
result of the pure LIN-2-OPT algorithm is given (make LIN-2-OPT improvements
until no further progress is possible) (Table I).

TABLE I

Results for 442-TSP by SA

Variant

Lin 2-Opt

SA Standard

SA Distance

Total nurnbcr of iterations length of best tour

until improvcmcnt impossihlc 57.30

2.000.000 53.30

2.000.000 51.76

Nore. These data are taken from [4]

168 DUECK AND SCHEUER

Note that in [4] only the best results obtained by the different methods are
given. It is not stated how many runs have been performed. Miihlenbein, Gorges-
Schleuter, and Kramer obtained in [S] solutions of lengths 51.24 and 5 1.21 with
evolution optimization, These results were obtained within 2h for any of the 24
processors of their parallel computer. Again it is not reported how many runs had
been necessary.

Now we give our results for some different numbers of iterations. The runs with
2,000,000 steps are comparable to the results above (Table II).

We observe that TA standard (2,000,OOO) and TA distance (2,000,000) and even
TA distance (l,SOO,OOO) are in the aoeruge better than the analogous best results of
[4]. Only a few of our results are worse than the best analogous results obtained
by SA.

Many of our runs give better results than the previous record-breaking values of
Miihlenbein, Gorges-Schleuter, and Kramer [S]. Our best value (50.95) is very
near to the optimum. Finally, we present graphics for our best two solutions. The
first graphic displays the optimal tour of length 50.80 found by Holland [6]
(Fig. 1).

The next two tours have been found by our TA algorithms (Figs. 2 and 3).
Observe that in both near-to-optimum tours there are parts of the tour which can

TABLE II

Results for 442-TSP by TA

Variant Total num-
bcr of iter-
ations per

lull

Tour lengths Mean Variance

TA Standard 2.000.000 51.94 52.22 52.38 52.46 52.52 52.96 0.2598
52.61 52.61 52.61 52.71 52.76
52.84 52.88 52.94 52.97 53.01
53.02 53.10 53.17 53.17 53.38
53.41 53.58 53.61 53.81 54.23

Th Distance 2.000.000 SO.97 51.07 51.16 51.27 51.29 51.51 0.0592
51.32 51.32 51.38 51.42 51.4X
51.53 51.53 51.53 51.53 51.57
51.58 51.62 51.63 51.63 51.68
51.69 51.80 51.86 51.X9 51.96

TA Distance I .500.000 51.07 51.11 51.21 51.29 51.40 51.53 0.048
51.41 51.42 51.43 51.43 51.44
51.47 51.49 51.54 51.57 51.57
51.58 51.69 51.69 51.69 51.70
51.72 51.82 51.82 51.X4 51.93

TA Distance 4.000.000 50.95 51.03 51.09 51.10 51.13 51.36 I .98
51.20 51.22 51.25 51.26 51.29
51.32 51.37 51.38 51.38 51.38
51.45 51.49 51.49 51.54 51.54
51.55 51.57 51.5x 51.59 51.74

FIG. I. Optimal tour for the 442-TSP by Hc Illand. This tour has length 50.80.

THRESHOLD ACCEPTING

I I 1 I

169

easily be shortened “by hand.” We never found any solution for the 442-cities
problem which was not obviously bad in some small areas. For instance, the last
solution can be polished by hand to become a tour of length 50.85. (The reader
should find at least one obviously bad position in each of our near-to-optimum
tours.) For tours with length ~51.50, one can improve mostly by 0.30 or even
more. Astonishingly, the best solution given in [4] of tour length 51.42 has no
apparent weaknesses.

The running time for the various algorithms depends, of course, mainly on the
total number of trials. The running times vary between one and three minutes of

r

FIG. 2. A tour for the 442-TSP by TA distance (4.000,OOO). This tour has length 50.95.

170 DUECK AND SCHEUER

FIG. 3. A tour for the 442-TSP by TA distance (2.000.000). This tour has length 50.97.

TABLE III

Results for 442-TSP by Deterministic TA

THRESHOLD ACCEPTING 171

CPU time and are thus approximately one-half of the SA running times reported
in [4]. Since we chose exactly the same number of trials for our TA method and
since we have easier calculations in the TA approach (no probabilities, no exponen-
tial function), this is exactly what one would exspect.

The computational results of the deterministic algorithms are surprisingly
excellent. Since the running times of these algorithms are only a few seconds we are
abe to study these algorithms in detail. We give the results of 100 runs for each of
the parameters nb = 3, 20. We give the range of the tour lengths, the running
times, and the number of resulting tour lengths below 52.00 (Table III).

A close look at Table III shows that for reasonable parameters nb one can
achieve solutions below 52.00 within a very few seconds. Also, it is possible to
generate very high quality solutions very quickly, if one takes “the best trial of n
trials.”

In a very recent paper, Miihlenbein [101 gives a statistic of the running time of
his genetic algorithm. It is reported that a 16-processor machine (MEGAFRAME
SUPERCLUSTER consisting of 16 transputers) is able to achieve solutions below
52.00 within 5000 s. 32 processors need 1500 s, 64 processors, 600 s. (We have used
only one processor of a IBM 3090 with vector facility.) Furthermore, we easily
achieve solutions below 51.50 in three to four minutes of time with our algorithm.

SOME RECENT RESULTS ON THE 532-0~~ TSP OF PADBERG AND RINALDI

In [7], Padberg and Rinaldi solved a 532-city TSP. The optimal tour length for
this problem is shown to be 27,686. Recently, we got the coordinates of this
problem and made a quick run of the deterministic TA algorithm. We used a trivial
and not optimized threshold lowering schedule as in the program for the 442-city
problem. We produced 100 different solutions with the parameter nb equal to 15.

The best tour has a length of 28,014; 61 tours have a length of less than 28,500;
the length of the worst tour is 28,825. The average running time of a single run was
14.8 s. However, we are not aware of results with simulated annealing for this
problem.

For their solution of the 532-city TSP Padberg and Rinaldi needed 50 good solu-
tions for that problem. They used as an heuristic an adaptation of the well-known
algorithm of Lin and Kernighan [121. The solutions they obtained range between
28,150 and 29,143. It is reported, that the running time to obtain those 50 solutions
was about 4 h on a VAX 1 l/780.

We conclude that the deterministic TA algorithm is of equal quality compared
with the Lin-Kernighan algorithm for this problem, that it runs considerably faster,
and, of course. that TA is the easiest heuristic to implement.

If one compares the results obtained by TA for the 442-problem and for
the 532-problem, then it seems that TA yields better results for the 442-problem.
The reason might be that the 442 is of a very regular structure compared with the
532-problem. It may be, that better results for the 532-problem necessitate a closer

172 DUECK AND SCHEUER

study of an appropriate threshold lowering schedule, which was not necessary for
the 442-problem.

In [IO], Miihlenbein reports results obtained with a parallel algorithm using
concepts of genetics and learning. The best solution obtained by this algorithm is
27,702, which is very near to the optimum. On the other hand, the computation of
this solution needed nearly 10,000 s of time for any of 64 transputers. It is not
reported, how many trials were necessary for such a high quality solution. Also, it
is reported that the algorithm needs about 1000 s on 64 transputers to achieve
solutions of a length of 28,500 or less.

We conclude that Miihlenbein’s algorithm generates better solutions for the
532-problem than TA does. For the 442-problem, however, TA gives better results.
In any case, TA is orders of magnitude faster. Possibly, one could use deterministic
TA to produce lots of good solutions as an input for genetic algorithms to
drastically reduce their running time.

ON THE GENERATION OF ERROR-CORRECTING CODES

In this section we describe the problem of finding constant weight codes. As well
as in the preceding case, TA leads to good results.

A binary (c, n, d)-code is defined to be a set of c O-l-sequences of length n called
codewords, such that the Hamming distance between every pair of words is at least
d; that is, every two words differ in at least d digits. Then, for each codeword we
define the weight to be the number of l’s in this word. A constant weight (c, n, d, w)-
code is a binary (c, n, d)-code consisting only of codewords with weight IV. The
problem is to find for given parameters n, d and ~1 a constant weight code with as
many codewords as possible.

For a TA algorithm we have to define

- a start configuration
- the form of a perturbation step to get new configurations
- a quality function.

For a start configuration, we randomly choose c codewords of the desired length
n with the desired weight u!. The TA algorithm will successively change this initial
code, until (hopefully) all sequences have a mutual distance of at least d.

The simplest exchange step “old code” + “new code” is to alter one bit in a
randomly chosen position in the code. However, if one changes one bit in a single
codeword, its weight is changed, too. Therefore the canonical exchange step for this
kind of problem is a transposition of two positions in one of the c codewords.

For the measurement of the quality we also used a canonical function:

a. b codewords
d(a, b) < d

THRESHOLD ACCEPTING 173

Here, d(--, -) denotes the Hamming distance between two codewords. We looked
for an algorithm minimizing this function. A TA algorithm designed following these
ideas yielded the code sizes, which we catalogue in Table IV. The best known lower
bounds can be found in [8, 111, the upper bounds are taken from [S]. Our results
are really a first trial, and we shall present more elaborated results in a further
paper. The TA results are substantially better than the analogue ones for SA, except
for the two cases where the best known lower bound was found by SA (here, the
authors of [S] state that these codes were found only after “more computational
effort”; we shall make a larger experiment with TA, too).

For the generation of codes with codewords of length 2n and weight n one can
use a simple trick, which often leads to good results.

Suppose a is a codeword of length 2n and weight n. Let ti be the complement of
a, i.e., ti is derived from a by altering all bits of a. Clearly, d(a, ti) = 2n. Observe that
li has again weight n. Now use a TA algorithm with the quality function

1 (d- d(u, b)y + 1 (d-4@ b)J2,
0. h codewords u, h codewords

d(u. hl <:d d(a,bl>Zn-d

which is to be minimized. If the algorithm stops with a function value of zero, then
for any two codewords a, b in the final code we have

d<d(u, b)62n-d.

TABLE IV

Table of Constant Weight Codes

24 IO II 75 223 57 62

24 10 I2 81) 247 60 65

Nore. This table contains several lower bounds for comparison with the results obtained
by TA.

174 DUECK AND SCHEUER

TABLE V

The 21 Codewords and Their Complements

codewords complcmcnts

0100100101010111010110 ~o~~o~inininioonioinni
010001 I 11001001 IO1 1001 ioiiioonniioiinoinoi~n
0l000lllll10000011)1110 101 I inoooooi i I I ioiooni
iOniolinnloiioinnilnin ni inioni Inmini inomi
ninoninonnioiio~oiiii~ 101 i 101 i I ioiooioinoono
noiiniiinnoooi~noioiii iinoinnoiiii~oniioiono
iiioiiiinonnionoiinnlo nnoinooni I I 101 I ioni 101
1001 I ini ioiooni ioioion 01 innninnini i ioninioi i
oii~iiooniiinnonn~nnii iooonni I ionoi I I I ini 100
lnininoiniioooiiooinii ninini ininoi I 1001 ioinn
onlnininiiooionioiiiin I inioinioni ini 10i00001
iooniooniooinoioi i ii i i ni I 101 I ini 101 ioioonnnn
iiiinooiioniniononiiin nnnniiinniininiiiionn~
oiniiniiininininoonnii ininoioonioinini i ii in0
0ioio0ni0~0ni0ioi I I ini lnini i ioini lninioonnin
nioi I ion~oooni I I ioinin inioooi~f~~iiinonoinini
nl Ini iniooii inionoi inn inniooioi innoicbi I ino1 I
onniiiniooniiooiinniii ii inooioi i 1001 inni inn0
noiononi ini i i I 101 inoin i 101 ii inoinnnnoioni ini
inoni 101 I inni ion01 ioni ni i Inoiooni inni I 1001 in
nnni10iiooiininiiii0f10 I I inninni ionir~~nnoni I I

Note. These 42 codewords form a (42. 22. IO, I I)-code.

This relation immediately implies that

where 6 is the complement of b. (Note that d(a, b) + d(a, 6) = 2n always.) Therefore,
the new code consisting of the codewords found by the algorithm, together with all
complements of these codewords, has minimum distance d.

The advantage of this approach lies in the fact that one can look for fewer
codewords to get a large code. The disadvantage clearly is that the compound
quality function is harder to minimize.

Using this method for the special case TV = 11, c = 21, we found within very few
seconds of CPU time the (21,22, 10, 11)-code (see Table V). The distance matrix of
this code is shown in Fig. 4.

We conclude that the 21 codewords in Table V form, together with their
complements, a (42, 22, 10, 11)-code. Until now it was known only that there exist
(38, 22, 10, 11)-codes, cf. [111.

THRESHOLD ACCEPTING 175

10 12 12 10 10 12 10 10 10 10 10 10 12 10 10 10 10 10 12 10
10 10 10 10 10 12 10 12 12 12 10 12 10 10 10 10 12 12 10 10
12 10 12 10 12 10 12 12 12 10 12 10 10 10 10 10 12 12 12 12
12 10 12 12 10 10 12 10 12 10 10 12 12 10 12 12 12 12 10 12
10 10 10 12 10 12 12 10 12 10 12 12 12 10 10 10 10 12 10 12
10 10 12 10 10 10 10 10 12 12 12 10 10 10 12 12 10 10 12 12
12 12 10 10 12 10 12 10 12 10 12 12 10 12 12 10 10 10 10 12
10 10 12 12 12 10 12 12 10 12 10 12 10 12 10 10 10 12 10 10
10 12 12 10 10 10 10 12 10 12 12 12 10 12 12 10 10 12 12 12
10 12 12 12 12 12 12 10 10 10 10 12 10 12 12 10 12 12 10 12
10 12 10 10 10 12 10 12 12 10 10 12 12 12 12 12 12 12 10 12
10 10 12 10 12 12 12 10 12 10 10 10 12 10 10 12 10 10 10 12
10 12 10 12 12 10 12 12 12 12 12 10 12 12 10 10 12 10 12 12
12 10 10 12 12 10 10 10 10 10 12 12 12 10 10 10 10 10 12 12
10 10 10 10 10 10 12 12 12 12 12 10 12 10 12 10 10 12 10 12
10 10 10 12 10 12 12 10 12 12 12 10 10 10 12 12 10 12 12 10
10 10 10 12 10 12 10 10 10 10 12 12 10 10 10 12 IO 10 12 12
10 12 12 12 10 10 10 10 10 12 12 10 12 10 10 10 10 12 12 10
10 12 12 12 12 10 10 12 12 12 12 10 10 10 12 12 10 12 12 10
12 10 12 10 10 12 10 10 12 10 10 10 12 12 10 12 12 12 12 12
10 10 12 12 12 12 12 10 12 12 12 12 12 12 12 10 12 10 10 12

FIG. 4. Distance matrix of the (21. 22, 10, 11 j-code.

CONCLUDING REMARK

We have investigated TA only experimentally on an IBM 3090 VF. In a theoreti-
cal paper [131, Althijfer and Koschnick proved that TA has convergence properties
which are similar to those of SA. They state in their very recent paper that “in a
certain sense ‘SA belongs to the convex hull of TA’.”

REFERENCES

I. S. KIRKPATRICK, C. D. GELATT. AND M. P. VECCHI, Science 220, 671 (1983).
2. N. METROPOLIS, A. ROSENBLUTH, M. ROSENBLLJTH. A. TELLER, AND E. TELLER, J. Chem. Phys. 21,

1087 (1953).
3. M. GR~TSCHEL. Preprint No. 38, Universittit Augsburg (unpublished).
4. Y. ROWDIER, M. TROYON, AND TH. M. LIEBLING, OR Spekrrum 8, 151, (1986).

5. H. MOHLENBEIN, M. GORGES-SCHLEUTER. AND 0. KRAMER, Parallel Compur. 7, 65, (1988).
6. 0. A. HOLLAND. Dissertation. University of Bonn. 1987 (unpublished).
7. M. PADBERG AND G. RINALDI. Oper. Res. L-err. 6, 1 (1987).

8. A. A. EL GAMAL, L. A. HEMACHANDRA, 1. SHPERLING, AND V. K. WEI. IEEE Trans. Inform. Theor>
IT-33, 116 (1987).

9. S. LIN. Bell Syssl. Tech. J. 44, 2245 (1965).
10. H. M~HLENBEIN, preprint (1988).
11. J. H. CONWAY AND N. J. A. SLOANE, IEEE Trans. Inform. Theory IT-32, 337 (1987).
12. S. LIN AND B. KERNIGHAN. Oper. Res. 21, 498 (1973).
13. I. ALTH~~FER AND K.-U. KOSCHNICX, SIAM J. Control Optim. submitted.

%I 90.1-12

